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Time-Independent Variational Approach .6

to Inelastic Collisions of a Particle

with a Harmonic Oscillator

Yasutami Takada
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Santa Barbara
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and

Institute for Solid State Physics*
University of Tokyo
Roppongi, Alinato-ku
Tokyo 106, Japan

Abstract

A variational approach is applied to collisions of a particle

having a mass m with a harmonic oscillator having a mass M in one

dimension. We have used trial functions which become exact in

the limit of either m/M>>l or m/M<<. We have derived exact

expressions in the limit m/M - 0 for inelastic as well as elastic

collisions to leading order in the parameter m/M for any

impenetrable interaction potential.

PACS 1987 numbers: 03.65.Nk, 34.50.Lf, 82.65.Nz 79.20.Rf
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I. Introduction

Scattering of atoms from surfaces has received considerable

attention in recent years.' Several theoretical methods have been

developed to deal with this problem: The stochastic classical

trajectory method,2 the eikonal approximation,3 the trajectory

approximation,4 and the semiclassical gaussian basis set method.5

So far, however, fully quantum mechanical treatments are limited

to theories6-8 based on (first-order) distorted wave Born

approximation (DWBA). In this paper, we propose another quantum 0

mechanical treatment by employing a time-independent variational

approach 9

Variational methods in scattering problems can be classified

into three groups: The first one is based on the standard

10variational principles of Hulthen and Kohn.'' The second one is

based on the Schwinger variational principle.'2 The last one is

the combination of these two, first formulated by Takatsuka and

134Mckoy for the phase shift and then by Gross and Runge" for the

T-matrix. The advantage of this approach is that we can evaluate

the T-matrix ,as easy as we can in the first approach without

imposing the standard scattering boundary conditions on trial

functions. For this reason, we will take the third approach.

In the present work, we consider a quantum-mechanical system,

in one dimension, of a particle interacting with a fixed harmonic

oscillator. This is a paradigmatic model and provides a ground D

for testing any approximate method to treat the problem of

-2-
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atom-surface scatterings. The Hamiltonian of the system is

2 2  2  o , ,1

x2  2 + Y ? + V(X-Y).21n 512 27 t 2 '

where ru and x are, respectively, the mass and coordinate of the

incident particle ''incidon"), A, w, and y are the mass.

frequency, and coordinate of the oscillator respectively, and

V'r'-y is the mutual interaction which we assume impenetrable.

When we measure energies and lengths in units of hw and (f/tf)1 /2

respectively, the Hamiltonian (1) can be rewritten as

H L 2  I d )2  (+ )
2 1 ax2  2 dy2 2

where p is the mass ratio mn/,f.

In the past many workers treated this system. Secrest and

Johnson 15 published a detailed numerical solution more than twenty

years ago, mostly with an exponential repulsion between particles

(the soft-core potential'. Other approximate methods were also

applied, for example. a purely classical treatment16 which was

developed later to the stochastic classical trajectory method,

the method of Pechukas1718  which lead to the trajectory

approximation, and first-order DWBA. 6  However, the most-i

successful work was published by W.H. Miller 9 who dealt with

general semiclassical collision theory including specific

applications to the present model. For the collision parameters

chosen by Miller, excellent agreement (to within a few percent, Cc,

-3- 0-
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I

with the numerical results was obtained by a simple semiclassical I

S-matrix treatment. The method of Heller5 could also give as

accurate results as Miller's method could.

The criterion for the validity of semiclassical calculation

is that, for given initial oscillator and incident energies, the ;%

possible classical energy changes, AEci (which depend on the angle

parameter of the oscillator), span several oscillator excitation 1

quanta:

An w AE i/h > 1. (2)

This is an expression of the correspondence principle. As is well

known, suitable semiclassical calculations may give rather

accurate results even when the condition (2)' is not satisfied 0  S

For given initial energies of the oscillator and incidon.

the semiclassical condition (2) is violated in two regimes when,

as is well known, classical energy transfer is small: yI) m>>M

and (II) m<<M. The first regime is similar to the

Born-Oppenheimer adiabatic regime for molecules, with the

oscillator and incidon corresponding respectively to the molecular S

electrons and nuclei. The second regime may be called

anti-adiabatic. We will treat primarily these two extreme

situations in this paper. I

In both regimes the collision is predominantly elastic. The

inelastic collisions depend on the details of the potential

V(x-j) i- the first regime. but they do not in the second one.

Thus we can derive the exact expressions for inelastic collisions

-4-



to leading order in the parameter ni/M. As will be shown in this 3,

paper, the results are the same qualitatively for all impenetrable

potentials, but they differ quantitatively depending on whether

V(x-y) is (a) the step-function potential VoO'-x-y'- with the

Heaviside function 0(x), or (b) the hard-core potential VHc ,x-y",.

defined by

VHC(X-) -0 for x>y,

O for x<y. $3)

Results for any other impenetrable potential are reduced to those

in one of these two cases. For example. the soft-core potential,

VsCx-y), given by IN,

V (x-y) - e-° -Y), (4 .

provides the same results as VHC(X-yJ". ,A penetrable, localized

potential gives qualitatively different results. but those results

are the same as those for the delta potential a31x-y, where r" is

defined by

f V(x)dx. 5"

We will not consider this case in this paper.) :-.

In Sec. II, we give a variational expression for rtflection

amplitudes and relate it with expressions in DWBA and the standard

variational approach. We treat the adiabatic and anti-adiabatic

A

-5-
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regimes in Secs.III and IV, respectively. Finally in Sec.V, we

discuss some possibilities of improving on the results for the

cases of m ' M.

II. Variational Expression for Reflection Amplitudes

A. T-matrix

When we divide the Hamiltonian H into the unperturbed part

HO and the interaction V. we can write the Lippman-Schwinger 11

equation for the exact wave function i (> with outgoing wave

boundary conditions as follows:

I "> - Ikot> + Co +'VKT >, (6)

where ;o,> is the normalized eigen function of Ho and Go is

the Green s function, defined by ',.4

G lim (7)
-oE-Ho+ i E

Quite similarly, the exact wave function <41 -I with incoming wave

boundary conditions satisfies the following equation:

<Pt I - <(t + <(of VG . 8) p

As shown by Gross and Runge 14, the functional CT],, introduced by

_.'. "- ;<ofVI4;ro -> + <, pojjVG ) >

-6-



+ < -, vc0  (*)'v ko, >

- <Pf <* l v 3 (V)Gv-V;o 'VGo C'-v I )>, 9
p.

is reduced to the exact T-matrix element <poIVK ( 2' when trial

functions lP (*)> and <- HI are equal to the exact wave functions

IFH)> and <;I (-), respectively. In addition, [T]i, is stationary S

for small variations of trial functions around the exact wave

functions. Therefore Eq.(9) gives a variational expression for

the T-matrix.

When we define IP, (*)> and <pf -I by

I, <> - I o,> + Go <V > i (-)>, I o)z

and

<K/ (-I - <Ootj + <cp- ] V(o 0 lob)

Eq. (9) can be rewritten in terms of I0 (> and <j, ,f( as

CT)I, - <pf (-)IH-EIj, (-'>- <,oiIHo-EIk1 p >. 11

Although trial functions IV, (')> and <Vf -I are not required to

satisfy the standard scattering boundary conditions. the incoming

(outgoing) part of IV, (*)> (<(-I) should be equal to ,,'

KcO! ). This is the only requirement for trial functions in

Eq.'11).

-7- .,"-



B. DWBA

If we know exact solutions of Ho+V where V1 is some

interaction potential appropriate to the problem, we can rewrite

Eq. (II) with the use of the exact solutions of HO-V 1 , <-;if- . as

follows:

CT~s,

- <(P it V1 I po,> + <cpj; - H-E > - i Ho-,-Vi-E (12

where < nj (-1 satisfies

<4011 <-) - <PO1 + <-,If {- I rVC4
(' -  (13

t,

The first term in Eq.(12) is the exact T-matrix for tLe

Hamiltonian Ho+Vi.

When we take Io, (*)> and < P (-)I as 1i, _ > and <,!if -j'l

respectively, Eq.(12) gives the DWBA result:

CT]:, - <pf <-)lV, lOO,> + <-(,/ "-)lv-V11l-;1, 1 4:,

In this sense, the expression (12) (or equivalently Eq. IlI is

an extension of DWBA.

C. Unitarity

The variational expression for the S-matrix is given by the

following matrix relation:

-8-
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p2.

(S] - 1-2wiCfT . 151)

In general, however, this matrix [SD does not satisfy the unitary

condition:

SS, - S'S = 1. 16) N

One way to fulfill Eq. 16) is to formulate the problem in terms

of the K-matrix3 but in that case, we have to use standing waves

,'P instead of ; and @- One of disadvantages to use standing

waves is that we have a difficulty in providing a physically

suitable form for $p P. This seems to be very inconvenient for

our purpose. because our basic strategy is not to perform any

variational procedures, but to use Eq.(11' to evaluate reflection

amplitudes with trial functions which become exact in some extreme .%

limit of parameters involved in the Hamiltonian. Another

practical difficulty in the k-matrix formalism is that there

appears divergent integrals in the formula for an impenetrable

potential.

Another way to satisfy Eq.(16) is to 'normalize* [S] by the

introduction of CS]. defined by

[5 ] -([SDCS-]7'1
2CS] dla

CSj [S,3[S1,/'1 2. 17b.

010

For any matrix CS], Eqs.(17a. and (17b give the same CS]. In both

NN
-9-
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limits of m/M-' and 0, (5] coincides with CS] and there is no

problem about the unitarity to leading order in the parameter m M.

D. Reflection amplitudes

Let us apply Eq.:,11) to the problem of the Hamiltonian given

by Eq. (1I). The normalied free state J(0,> for the incident wave

is given by

<xr, k0o> - 0, 'O(xy), 18,

with

0 ) , , exp (-ik,x)u,( ), 19

where k, is related to the total energy E through

E - k + i +1 20'
2p2'

S.

'! and u,(y' is the eigen function of the harmonic oscillator. given

"a by

-7- (.-T2 i!)-/2H,( ) exp (-Lr-. 21'

Here H,(x) is an Hermite polynomial. Similarly, the free state

for the reflected wave is given by

<€,)1x Yj> - 1 (°Yx, ). 22
-10

p ,.

-10- ,



With these definitions for free states, the reflection amplitude

(R)I, is given by

7- 2ifdX fY~i xy ;H-E)Q (,y
f-_f

-2-,, fdxfdl.KI "X~y HO-E)'P1  (ry231

When trial functions , ( x)( , ; - x,iI,, '-'> and

f (-)* ) --- < -)Ixu > satisfy the standard scattering boundary

conditions

0i ,. Y Rm,¢. (°)(T,Y/ for Xr-- ',

0 fo X- -' 124 ), ip%-
(,-) -0 ~ +Z R~ 1~ frx--

o for x--, (24a)
4..

and 0

(- .0 ) + R1,¢O . for r--,

0 for x--- (24b' ,

Eq.(23) can be reduced to

CR'I, - Rt,-2 i f dxf(I , - u) H-E',, "25-

This is just an expression in the standard variational

approach.1011 Therefore an extension of the standard variational

e JF
-11- P1 '
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method is made in Eq. '23) in which the second integral replaces

the requirement of the conditions (24a) and (24b) for trial

functions. P

III. Approach from Adiabatic Regime

In this section, we evaluate CR]f, in Eq. (23) with trial

functions which become exaat in the limit of p>>1 in the

Hamiltonian (1'). When p becomes very large, we can neglect the

kinetic energy term of incidon in zeroth-order approximation.

Then the equation to determine the motion of oscillator can be

written as

+ 2 + + V(1-Y)3Y,(Y;X)- V,(1)Y n 'Y ) ) (26'
~2 6Y2 2

where the boundary conditions for the normalized wave function

Y,(yi~x) are given by

Y.,.y;x) - 0 as y - ± . (27)

In Eq.(26), x is an 'external' parameter and the eigenvalue V,(x)

provides and *adiabatic potential* for the incidon. Namely, the

motion of incidon is determined by

2p

1 d S
(--± - , +V,(x) IX,,(x) - EX,("x) ( 28',

2p dx- I
with the following boundary conditions:.

-12-
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-I

X.(x) -Ii / 2 7rk e - k, + t e kx i6 for r--.

0 for 1---, 29

where 6, is the phase shift to be determined by the solution of

the Schrodinger equation (28). Clearly. as r--, V,:i and

Yn(Y;x) approach n+I/2 and u,(') respectively. Thus k, is

determined by the relation

E - k + n + 130)- 2-

By multiplying X, by Y,, we obtain a trial wave function as

(X Y(xu) - P (-)*(x,!) - ' X,(xY,(y/x), (31-

which becomes exact in the limit p- - and is expected to be still

a good trial function for >>1. The wave funcetion n "'' has a

property of only an elastic reflection with the amplitude

exp (i6,)

The inelastic reflection amplitudes can be evaluated with

the use of Eq. (23) (or rather Eq. (25) in this case and the trial

function (31). The result is given by

CR]I, - e 56f.-,

2u-, - "x)X1(x + \, - z: ,\f'

-13-
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+ aY (Y;X) O Y ; )X ,(X ) (32)

where 6 ib is the Kronecker's delta function. Equation 32, shows

that 'non-adiabatic' transitions occur only when Yr: ; dx does

not vanish.

In Fig.1, we have shown the numerical results of transition

probabilities ICR~i0o and the normalized ones l(RPfoF2 for the case

of the hard-core potential and p=5. Solid curves represent the

exact results, given by Secrest and Johnson5 , while the broken

and dotted ones show the results of I kRs012 and I CR]fo 2

respectively. We have also calculated the case of p=0.5, but the

results for both CRJ11I2 and are not good except near the

threshold, namely

E - maxfi + 1, + '}, (33)

at which the motion of the incidon is always very slow

irrespective of w.

IV. Approach from Anti-Adiabatic Regime

When p is very small, the kinetic energy term in the

Hamiltonian (I') becomes very important and the free motion of

oscillator can be neglected in zeroth-order approximation.

However, we cannot neglect the potential term Vx-y, , because this .

is always larger than the kinetic energy for an impenetrable

-14- '
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potential. Thus in zeroth-order approximation, we should consider

the following equation first:

1 62 V2
C[ 2 x + V(X-y) . ' " , - (X; Y) (34'.

with the boundary conditions for X, as

S

X lKt;!J+ - p/2-,,k-,ek, x + for -- ,

0 for r---. (35)

It should be noted that the phase shift 6, will depend on y, in

contrast with the case of Eq.(29). By considering the difference

between Xn(x;!) and Xk(x;O), we can write X,(x;y) in terms of .0

n (x;O) as

.Y,,(x'y) - e-ik"nY.(x-Y) (36)

The motion of oscillator can be determined in zeroth-order

approximation as

1 d~~2 1 .(y) n-tnY
-< n+l)Y.(g) ,37)

2 dy 2

This is nothing but the equation for a free harmonic oscillator

and the solution is u.(y). Combining X.(xzy> with u(y), we obtain

a trial wave function as .V,

X, Y) . ', - .O(antt X ) -u,:, y'e- ik - 38)

-15-,
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which becomes exact in the limit P--0.

Since the trial wave function (38) does not satisfy the

standard scattering boundary conditions (24), we have to use

Eq. (23) to calculate CRfi. The result is

(Rl - f2rifdx V(X 1 (X 1 (X)

- 27ciL '"fdxCXV(x)+iktik(x)) [Xtizde' ,(x) tk,.\, ;)]}

x fdy uf(y)tui(y) exp C-i (kj+kf/)D. (39 1)"

In deriving Eq.(39), we have used the relations

duguj - ./2am! /2"n! (- i a)7 -me- 2/4L. n-m G- 40)f un(J)'u"(!2)e1 0
o (40)

and

dy un(Y) du.(y) e-' -i (a - n-mr du Un Y)U.Y e', 41fdy 2 a )fd ,yu ,.u 1"

where L. (')(x) is the associated Laguerre polynomial. defined by %

L. ( (x) - e d" (ex*) (42)m! dx"

In the following, we will evaluate Eq. (39) for several types of

potentials.

A. Hard-core potential

-16-
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When V(x)-VHC(x). ,((x) is easily solved to be

-kx ik~x.X:(x) ./ix/2,k. (e-' -e ')O(x) ,43,

Thus we obtain

CR1 , -  2 k (1+fdy uf(y)u,( y) exp C- ik -kf)YJ. 44>k , -k # ' ,

As i approaches zero with the total energy E fixed, k, also

approaches zero. Therefore, Eq.(44) has the following expansion

in terms of W:

CR]S, - -5/,+2i K!TkIf dcl?) uf(I)U (h)Y• (45)

This agrees with the exact result obtained by other methods. 21.22

The elastic term becomes dominant, while the inelastic terms

involve only one quantum jumps to leading order of p whose

amplitudes are proportional to /'l.

In Fig.2, we have shown the results for transition

probabilities I[R3#o1 2 and the normalized ones lir0 for the cases

of (a) M=0.125 and (b) i=0.5, together with the exact results of A

Secrest and Johnson. is (Solid, dotted, and broken curves

correspond, respectively, to the exact results. CR~f0 2, and "

I /01o 
2.) The agreement between k[J o02 and the exact results is

excellent for all calculated energies E for the case of o=0.125.

Even for i=0.5, the qualitative features are reproduced in our

calculation of ICPfOiI 2.

-17-
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B. Soft-core potential

We can solve t(i) with the use of the modified Bessel

function I(!z) for the soft-core potential Vc(i). The result is

X X) - 4k, ( 2 1/ 0 2) -tk a

(46)

where Fi.x) is the gamma function. We can perform the integrals

in Eq. (39) and obtain

2 IkT7 1 )k- p ____

k,+k- a

x(21 .(k, kf)/aiF,1 + i (kl+kf)/) / O [F.(l+ i(k, ki /a) [2

-a-) F(l-i2k,/a) F(l-i 2kt/la)

xfdy Uf()ui (Y)e -i(kk). (47)

As p approaches zero, Eq.(47) has the same asymptotic

behavior as given in Eq.(45). Namely, there is no difference

between the hard- and soft-core potentials in the limit 11-0.

The same asymptotic behavior is also expected for any potential

V(x) which becomes infinite at some point .O and goes to zero

sufficiently quickly for x--. (The type of potentials considered

here is illustrated in Fig.3.) This can be seen rather easily by

evaluating the leading correction term in the difference of

reflection amplitude, A(R]j,, between V(i) and V ~c(.rx,:. We have

-N8-



AtR]j, - -2iri dxCV (x+xo) -VHc (x) I

'dt dX1,' ti t i f
x.X/(x)X,(X) + (T d)ext(x)j{ t+ikI.f¢t)}ekt

+ - 'X .) dt dX,(t) + i , , t' e ' k , t]
+ (1l+ I)e'ktz'i(x)jd {Cx;;L +iX(he

T dt

xf du uf(y)ul(!)e - '( k ,k), 48)

where X( ) is given in Eq. (43). As u goes to zero. Eq. 48) has

the following form:

ACR~,k fdi: CV(x+xo) -Vc(z ]z
= -4CCk,+kC

xfdy uf(y) ui(y) e - (k, *kr)". (49)

Thus A[R]Ii is at most of the order of p and is negligible.

Physically, such a general behavior stems from the fact that as 4

approaches zero, the de Broglie wavelength of incidon becomes so

long that the incidon cannot see details of the potential.

When we treat the case of finite p and small a. Eq. 47' will

give much different results from those of Eq. (44). In order to

check this situation, we have plotted ICn] 1io2 in Fig.4 for the

cases (a) a=4 and (b) a=0.7 and compared with the exact resutls N

of Secrest and Johnson15 and those in DWBA. .To calculate the I

results in DWBA, we have used Eq. (14 with Vj'z =V x and

-19-



4 1, ((,) - (-)* ( y,)_$ D )(D 1 ) u1(,) ,(x). (50;

where kn(x) is given in Eq. (46).) Solid, broken, and dotted curves

correspond, respectively, to the exact results, ICR]1Oi12 calculated

with the use of Eqs.(171 and (47), and the results in DWBA. The

mass ratio p is taken to be 0.5. For large a, Eq.(47) gives

essentially the same results as Eq.(44) and provides a rather good

description, while DWBA gives quite poor results. The opposite

is true for small a. Physically, the heavy oscillator will not

change its motion appreciably by an impulsive collision with a

light particle. This is the reason for the success of Eq.(44)

for the hard-core potential. However, as the "interaction time'

becomes longer than w- , which can occur for the very soft

potential, we have to consider effects on the motion of

oscillator. In the trial function (38), those effects are not

taken into account.

C. Step-function potential

The step-function potential VO (-I- Y) gives a little

different behavior for JR]1 , in the limit p- 0 . The wave function

X.(x) is given by
;

x - ,/i7k/ {-2-, Ck- x C e Rne I  
,.

+ ((-x) (l-bR 'eX; x 51) 5

-20-
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where

-i kr11Kn
-n ~52 -

and N

K. - /2-,u(Vo-E+n+1/2) (531 _

As p approaches zero, [R]f, has the following form:

S VO /

=R~f, - tP (IR,) (1-RI)fdu uf(y)ut(y. (54) 9

Qualitatively. Eq.(54) indicates the same results as Eq.(45). In

addition, when Vo becomes infinite. Eq. (54) is reduced to Eq. (45'. S

The same asymptotic behavior of Eq. (54) is expected for a

potential having the form illustrated in Fig.5 in which the point

xO is determined by the following relation:

f clx (V(x) -V0O(-x+xo)] - 0. (55. $1'

The proof of the above statement goes in a similar way as in

Sec.IV.B. The difference ACR]f is given by Eq.(48" in which VC"-

is replacead by VoO(-x) and ,, is defined in Eq. (51,. Thus, as .

approaches zero, the leading correction terms for ACR]t, is given

as follows:

AR1, =dX CV(x x0) - VoOk(-1).x

-.
-21 - "



I

0,

2kf __,

" (k,(lI-R,)Rt + kj(1-Rt R,2k

- kf ( I-RfI( +R,) k, I -R,i I -Ri)

"fdy ufK~pu,(lJ)&lkk'

In deriving Eq.(56), Eq.(55) is used. As in the previous

subsection, ACR]I, is at most of the order of pi and is negligible

compared with the terms in Eq. (54).

V. Discussion

We have applied a variational expression (Eq.;,1)) to %.

collisions of a particle with a harmonic oscillator in one

dimension. We have used trial functions 4 adt X,- Eq..31,,

and <Olan)(XJ) (Eq.(38), in the expression to obtain exact results

in the limits 4-- and ju-0, where p is the mass ratio m,M. In

particular, we have derived exact expressions for inelastic as

well as elastic collisions to leading order in the parameter P

for any impenetrable interaction potential in the limit pi-0.

For finite u, we have obtained a rather accurate formula

(Eq.(44)) for the reflection amplitudes, when p is smaller than

unity and the interaction is a hard-core type potential. However,

for a soft-core potential and the case of p'- . Eq. (44' gives %4

poorer results than DWBA. We can improve on our results by

introducing some variational parameters in our trial functions

and determining them by a variational procedure. One possible

-22-
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way is to give the trial function in the following way:

n(y = n (X4JZ) + :l-A) n (nt)(~y), (57)
'adi, anti) ,., , 

.

where . is a variational parameter. This is the combination of

the adiabatic and anti-adiabatic approaches. Another way is to

give

, = un(Y)e-,A .Wx-n, (58)

where . ix) X,(x;y=O) is defined in Eqs.(34' and (35). When

R=1 ,;,(x y', is reduced to Ci(°ft1 y xy) while for 2=O, p(xy) is

nothing but On (DWB4>x,y defined in Eq.(50). Thus this is the

combination of the anti-adiabatic approach with DWBA.

In the near future, we will extend our method to treat

collisions in three dimension, in particular, gas-surfacde

scattering problems.
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Figure Captions

Fig. 1. Transition probabilities for a harmonic oscillator

interacting with a particle as a function of total energy

E. The hard-core potential is assumed. The mass ratio pj

is 5. Solid, dotted. and broken curves represent,

respectively, the exact results of Secrest and Johnson,

I[PR1j 2 given by Eq. '32). and iPhfjo2 given by Eq. (17, with

the use of those CR Io.

Fig. 2. Transition probabilities for a harmonic oscillator

interacting with a particle as a function of total energy

E. The mass ratios p are 0. 125 and 0.5 in ka) and (b)

respectively. As in Fig.I, the hard-core potential is

assumed. The exact results of Secrest and Johnson are

'wn by a solid curve, while lCR oI given by Eq.(44),

and normalized ones I[RCP]oI, given by Eq.(17) with the use

6i' those CR]f0, are plotted by dotted and broken curves,

respectively.

Fig. 3. A type of potential which gives the reflection amplitudes

in the form of Eq.(45) as p approaches zero.

Fig. 4. Transition probabilities for the soft-core potential case.

The mass ratio P is taken to be 0.5. Solid. broken, and

dotted curves correspond, respectively, to the exact

results of Secrest and Johnson, ICR] 10 12 with the use of

Eq. ,17) and (47), and those in DWBA. Cases of o=4 and

a=0.7 are treated in (a and b,. respectively.
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all
Fig. 5. A type of potential which gives the reflection amplitudes

in the form of Eq.(54) in the limit p-O.
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